On s'intéresse à la réaction de décomposition de N_2O_5 :

$$N_2O_5 \to 2NO_2 + \frac{1}{2}O_2$$

Cette réaction se produit dans les installations de chauffage, les automobiles, les centrales thermiques, les volcans ou les orages.

On suppose que cette réaction est d'ordre 1 c'est à dire que

$$\frac{\mathrm{d}[N_2 O_5]}{\mathrm{d}t} = -k[N_2 O_5]$$

On souhaite déterminer la valeur de k. Pour cela on a réalisé une expérience : On place une certaine quantité de N_2O5 dans une enceinte fermée de volume et température constante, on laisse la a réaction se produire et on observe l'évolution de la pression.

En effet, une mole de gaz N_2O_5 se décompose en $2NO_2 + \frac{1}{2}O_2$, c'est à dire 2,5 moles de gaz qui essaient d'occuper 2,5 fois plus d'espace. Puisque le volume est fixe, c'est la pression qui augmente. L'élévation de la pression nous informe donc sur la quantité de N_2P_5 qui s'est transformé.

Le volume sera $V=1\,\mathrm{L},$ la température $T=318\,\mathrm{K}.$ Le temps est en seconde. La pression est en hecto-Pascal.

t	0	10	20	30	40	50	60
P	1000	1389	1677	1890	2048	2165	2252

- 1. On décide d'appeler y le nombre de moles de N_2O_5 . D'après l'équation différentielle, donner la forme de l'expression de y(t).
- 2. Au début de l'expérience, le nombre total de moles n est le nombre de moles de N_2O_5 , c'est à dire n(0) = y(0).
 - a) Chaque fois qu'un N_2O_5 disparaît, combien d'autres gaz sont crées?
 - b) Au bout du temps temps t, combien de N_2O_5 ont disparu? Donc que vaut n(t)?
 - c) La loi des gaz parfait nous dit

$$PV = nRT$$

Où $R = 8.31 \,\mathrm{Jmol^{-1}K^{-1}}$. En déduire la forme de P(t).

- 3. On souhaite déterminer k par un ajustement affine et en utilisant le tableau mettant en relation t et P.
 - a) D'après la forme de P(t), donner un changement de variable adéquate.
 - b) Faire l'ajustement avec ce changement de variable.
- 4. En déduire la valeur de k.
- 5. En déduire le temps de demi-réaction.
- 6. Donner $\lim_{t\to +\infty}y(t)$. Donner une interprétation concrète à ce résultat.

Remarque : On dit que la réaction est totale.

Autre approche possible

On peut obtenir la valeur de k et le temps de demi-réaction en tenant compte du fait que la réaction est totale.

- 1) D'après les données du problèmes, combien y a-t-il de moles de N_2O_5 au début de la réaction?
- 2) puisque la destruction d'un N_2O_5 crée 2,5 moles d'autre chose, combien y aura-t-il de moles à la fin de la réaction?
- 3) Quelle sera alors la pression?
- 4) Quelle est la pression à mi-réaction?
- 5) En vous aidant du tableau de valeur, en déduire le temps de demi-réaction.