$$\ln(a \cdot b) = \ln(a) + \ln(b)$$

Fonction logarithme

I. Définition

Primitive de $x \mapsto \frac{1}{x}$

 $x \mapsto \frac{1}{y}$ continue sur]0; $+\infty$ [\Rightarrow il doit exister une fonction f telle que $f'(x) = \frac{1}{x}$ pour $x \in]0; +\infty[$.

logarithme népérien, notée ln, est définie sur $\mathbb{R}^+ =]0; +\infty[$ et :

- $\ln'(x) = \frac{1}{x}$ $\ln(1) = 0$

Attention: La fonction logarithme népérien est notée ln avec un ℓ (On peut facilement confondre avec un i...)

Dans les logiciels, on utilise la notation anglaise : log.

Exercice 1 : ensembles de définition

Donnez l'ensemble de définition des fonctions :

- a) $x \mapsto \ln(2x+1)$
- b) $x \mapsto \ln(x^2 + 1)$

ln(u)

$$[\ln(u)]' = \frac{u'}{u}$$

Exemple: $f(x) = \ln(x^2 + 1)$. On reconnaît $\ln(u)$ avec $u = x^2 + 1$, donc:

$$f'(x) = \frac{2x}{x^2 + 1}$$

Exercice 2 : calculs de dérivées

Déterminez les dérivées des fonctions suivantes :

a)
$$f(x) = x - 2 - 2 \ln x$$

b)
$$f(x) = x \cdot \ln x - x$$

c)
$$f(x) = \ln(3x)$$

d)
$$f(x) = \ln(x^2 + 3x)$$

X	0	$+\infty$
$f'(x)=\frac{1}{x}$		
$f = \ln$		

X	0		$+\infty$
$f'(x)=\frac{1}{x}$		+	
$f = \ln$			

• $0 < x \Leftrightarrow 0 < \frac{1}{x} \text{ donc } f'(x) \text{ toujours positif}$

X	0	$+\infty$
$f'(x)=\frac{1}{x}$		+
$f = \ln$		

- $0 < x \Leftrightarrow 0 < \frac{1}{x}$ donc f'(x) toujours positif
- $f'(x) > 0 \Rightarrow f$ croissante

X	О	1 +∞
$f'(x)=\frac{1}{x}$		+
$f = \ln$		0

- $0 < x \Leftrightarrow 0 < \frac{1}{x}$ donc f'(x) toujours positif
- $f'(x) > 0 \Rightarrow f$ croissante
- Par définition que $f(1) = \ln(1) = 0$

X	C	1 +∞
$f'(x)=\frac{1}{x}$		+
$f = \ln$		$-\infty$ $+\infty$

- $0 < x \Leftrightarrow 0 < \frac{1}{x}$ donc f'(x) toujours positif
- $f'(x) > 0 \Rightarrow f$ croissante
- Par définition que $f(1) = \ln(1) = 0$
- limites sont infinies (Admis)

X	0	1	е	$+\infty$
$f'(x)=\frac{1}{x}$		+		
$f = \ln$	$-\infty$	0	_1_	$+\infty$

- $0 < x \Leftrightarrow 0 < \frac{1}{x}$ donc f'(x) toujours positif
- $f'(x) > 0 \Rightarrow f$ croissante
- Par définition que $f(1) = \ln(1) = 0$
- limites sont infinies (Admis)
- Il existe un réel e tel que ln(e) = 1.

In ne change pas l'ordre

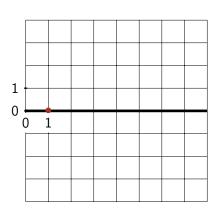
In \nearrow donc In **conserve l'ordre**. Avec A > 0 et B > 0 on a :

- $A = B \Leftrightarrow \ln A = \ln B$
- $A \leqslant B \Leftrightarrow \ln A \leqslant \ln B$
- $A < B \Leftrightarrow \ln A < \ln B$

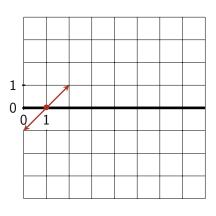
Exercice 3: résoudre

a)
$$ln(x+4) = ln(3x-5)$$

- b) ln(x + 4) > 0
- c) ln(4x 12) = 1

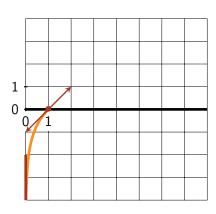


•
$$\ln' 1 = 1$$



•
$$\ln' 1 = 1$$

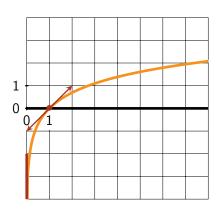
•
$$\ln x \stackrel{x \to 0}{\longrightarrow} -\infty$$



•
$$\ln' 1 = 1$$

•
$$\ln x \xrightarrow{x \to 0} -\infty$$

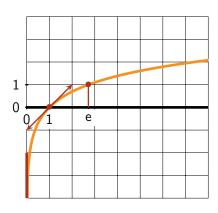
• ...



•
$$\ln' 1 = 1$$

•
$$\ln x \xrightarrow{x \to 0} -\infty$$

- ...
- $e \approx 2,7$



Croissances comparées

 x^n l'emporte sur ln(x).

Exemple: $f(x) = 3x \ln(x)$

Croissances comparées

 x^n l'emporte sur ln(x).

Exemple : $f(x) = 3x \ln(x)$

- En $+\infty$, $3x \to +\infty$ et $\ln(x) \to +\infty$. Aucun problème. $f(x) \to +\infty$.
- En 0, $3x \to 0$ et $\ln(x) \to -\infty$. Indéterminé.
 - 3x l'emporte, donc $f(x) \rightarrow 0$.

II. Règles de calcul

Invention par John Napier

John Napier (1550 - 1617), un mathématicien écossais, a créé une table mettant en relation des sommes et des produits. Il s'agissait de simplifier les calculs, notamment en astronomie, à cette époque où tous les calculs étaient faits à la main...

log = logos = relation; arithme = arithmeticos = nombreOn a eu tendance à franciser en Jean Neper.

À l'origine des logarithmes, on n'a pas la notion de dérivée (*n'existe pas avant Newton, donc 100 ans plus tard*) mais une règle de calcul :

$$\ln(a \cdot b) = \ln(a) + \ln(b)$$

Preuve de $ln(a \cdot b) = ln(a) + ln(b)$

Pour ceux que cela intéresse...

Je montre ici, en gros, comment on passe de $\ln'(x) = \frac{1}{x}$ à $\ln(a \cdot b) = \ln(a) + \ln(b)$.

Soit $f(x) = \ln(a \cdot x)$ avec a et x positifs.

 $f'(x) = \frac{a}{ax} = \frac{1}{x}$. Donc $f'(x) = \ln'(x)$. Donc $f(x) = \ln(x) + c$, où c ne dépend pas de x mais peut dépendre de a.

Pour x = 1, on a donc $f(1) = \ln(a) = \ln(1) + c = c$. Donc $c = \ln(a)$.

Conclusion: pour tout a et x positifs, $\ln(a \cdot x) = \ln(a) + \ln(x)$. Il suffit de remplacer x par b et on a la propriété voulue.

De cette loi on déduit toutes les autres comme $\ln(a^n) = n \cdot \ln(a)$.

Règles de calcul

Pour a et b réels > 0 et n un entier (mais c'est juste aussi si n est un réel!)

•
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

•
$$\ln(a^n) = n \cdot \ln(a)$$

•
$$\ln\left(\sqrt{a}\right) = \ln\left(a^{1/2}\right) = \frac{1}{2} \cdot \ln(a)$$

Exercice 4: simplifier

- a) ln(8) ln(4)
- b) $ln(12^{,}e)$
- c) $\ln(15^2) 2\ln(3)$
- d) $\ln \left(\sqrt{e} \right)$

Exercice 5 : résoudre

- a) $5 \cdot (1,03)^n \ge 100$
- b) $85 \cdot (0,95)^n \le 1$

III. Logarithme de base 10

Soit x = 46962125. Je désire encadrer x de la façon suivante :

$$10^n \le x < 10^{n+1}$$

Comment faire?

Soit $x = 46\,962\,125$. Je désire encadrer x de la façon suivante :

$$10^n \le x < 10^{n+1}$$

Comment faire?

Solution : on prend le logarithme népérien...

$$\ln\left(10^{n}\right) \leq \ln(x) < \ln\left(10^{n+1}\right) \Leftrightarrow n \cdot \ln(10) \leq \ln(x) \leq (n+1) \cdot \ln(10)$$

et on divise par ln(10)

$$n \le \frac{\ln(x)}{\ln(10)} = \log(x) < n+1$$

Comme $log(x) \approx 7, 7$, alors $10^7 \le x < 10^8$.

Définition de log

$$\log x = \frac{\ln x}{\ln 10}$$

Est le logarithme de base 10.

Dans les logiciels, on écrit souvent log10.

Exercice 6 : décibels

On utilise en physique une échelle de puissance en **décibels**.

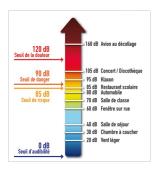
On utilise jamais le bel.

$$P_{bel} = \log P \Rightarrow P_{dB} = 10 \cdot \log P$$

Sur le graphique ci-contre, la puissance du bruit d'un avion au décollage est $P_{avion(dB)}=160\,\mathrm{dB}.$

La puissance du bruit d'une fenêtre sur rue est $P_{rue(dB)} = 60 \, \mathrm{dB}$?

Quel est le rapport $\frac{P_{avion}}{P_{rue}}$.



Exercice 7 : pH = potentiel Hydrogène

Par définition, $pH = -\log[H^+]$.

A

Si on calcule $\ln(x)$ ou $\log(x)$ ou $\exp(x)$... Il faut que x soit sans unités. Mais ici, $[H^+]$ a l'unité $mol \cdot L^{-1}$ et dans l'exercice précédent P était en W... Si on voulait être parfaitement rigoureux, il faudrait écrire :

$$pH = -\log\left(\frac{[H^+]}{1 \, mol \cdot L^{-1}}\right)$$

Mais c'est inutilement lourd et on ne le fait jamais.

- 1) Quel est le pH d'une solution dont la concentration $[H^+]$ est $2.3 \times 10^{-5} \ mol \cdot L^{-1}$?
- 2) Deux solutions A et B ont respectivement un pH de 3 et un pH de 5. Laquelle à la plus grande concentration $[H^+]$?
- 3) Est-il possible que pH = -0, 1?