

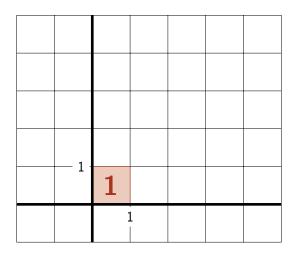
Intégration

I. Calcul d'aire

I. Calcul d'aire Intégration

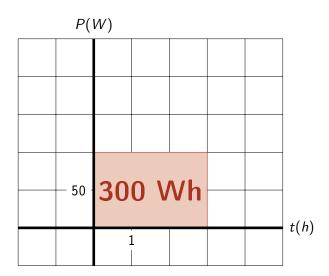
2 / 20

I. 1) Unité d'aire



L'unité d'aire de ce repère est donnée par le carré.

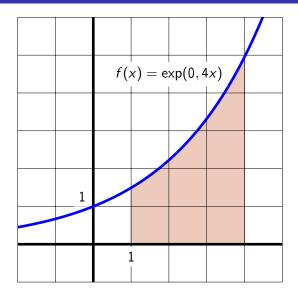
Avec des unités



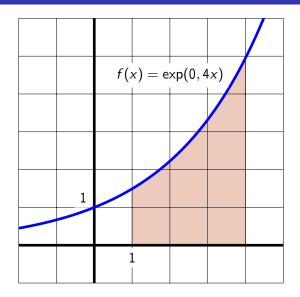
Le rectangle a une aire de $3h \times 100W = 300Wh$

4 / 20

1. 2) Problème : Donner l'aire sous la courbe

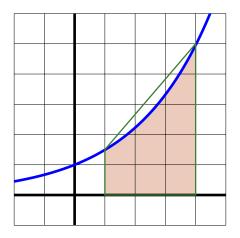


1. 2) Problème : Donner l'aire sous la courbe

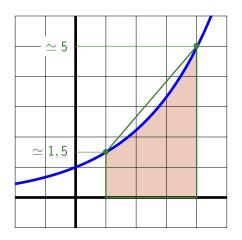


Estimation grossière : \simeq 8 ou 9ua

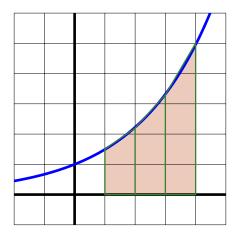
5 / 20



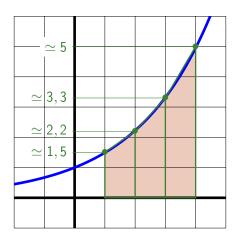
La zone ressemble un peu à un trapèze. On détermine l'aire de ce trapèze en repérant les coordonnées des coins.



Aire du trapèze ainsi tracé : $3 \times \frac{1,5+5}{2} = 9,75$ (pas bonne approx)

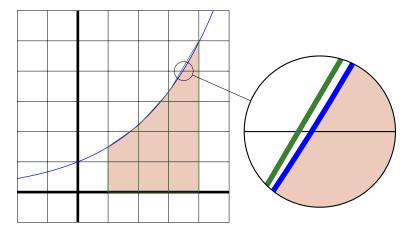


On peut mieux faire ne découpant la zone en trapèzes plus petits.

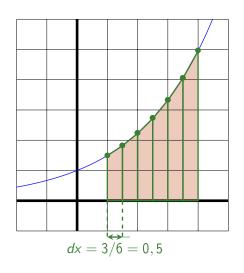


Aire des 3 trapèzes ainsi tracés : $\frac{1,5+2,2}{2} + \frac{2,2+3,3}{2} + \frac{3,3+5}{2} = 8,75$ (bonne approx)

Si on y regarde de plus près, on voit que nos trapèzes sont encore trop grands.



On peut découper plus, par exemple en six :



Avec une calculatrice...

X	f(x)
1	1,49
1,5	1,82
2	2,23
2,5	2,72
3	3,32
3,5	4,06
4	4,95

$$\mathcal{A} \simeq 0,5 \times \frac{1,49+1,82}{2} + \cdots$$

$$\mathcal{A} \simeq 8,685$$

On voudrait augmenter aussi grand que possible le nombre de trapèze. On peut utiliser un algorithme :

1
$$S = 0$$

2 $N = 300$
3 $dx = 3/N$
4 pour k allant $de \ 0$ à $N - 1$ faire
5 $x \leftarrow 1 + k \cdot dx$
6 $S \leftarrow S + dx \cdot \frac{f(x) + f(x + dx)}{2}$
7 fin
8 Renvoyer S

On voudrait augmenter aussi grand que possible le nombre de trapèze. On peut utiliser un algorithme :

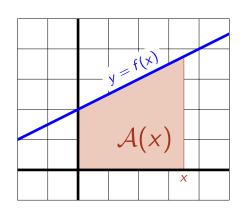
1
$$S = 0$$

2 $N = 300$
3 $dx = 3/N$
4 pour k allant $de \ 0$ à $N - 1$ faire
5 $x \leftarrow 1 + k \cdot dx$
6 $S \leftarrow S + dx \cdot \frac{f(x) + f(x + dx)}{2}$
7 fin
8 Renvoyer S

Retour: 8.653030854

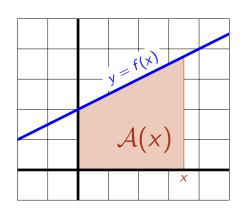
Les 4 premières décimales sont justes!

I. 3) Un lien avec la primitive



Déterminons l'expression de $\mathcal{A}(x)$, aire de la zone en rouge, avec $f(x) = 2 + \frac{x}{2}$.

1. 3) Un lien avec la primitive

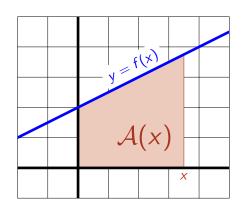


Déterminons l'expression de $\mathcal{A}(x)$, aire de la zone en rouge, avec $f(x) = 2 + \frac{x}{2}$.

$$A(x) = x \cdot \frac{f(0) + f(x)}{2} = 2x + \frac{x^2}{4}$$

On remarque...

1. 3) Un lien avec la primitive



Déterminons l'expression de $\mathcal{A}(x)$, aire de la zone en rouge, avec $f(x) = 2 + \frac{x}{2}$.

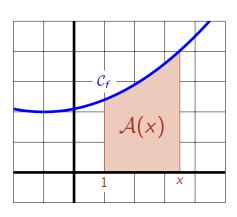
$$A(x) = x \cdot \frac{f(0) + f(x)}{2} = 2x + \frac{x^2}{4}$$

On remarque...

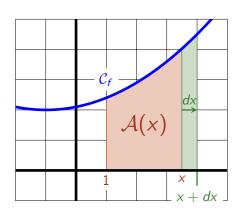
$$A'(x) = f(x)$$

 \mathcal{A} est une primitive de f.

Ce n'est pas un hasard!



Soit A(x), l'aire de la zone en rouge.

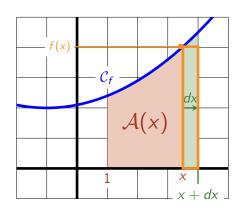


Soit A(x), l'aire de la zone en rouge.

On cherche $\mathcal{A}(\mathbf{x} + d\mathbf{x})$.

Soit dA l'aire de la zone en vert.

On va supposer f croissante, continue et positive sur [x; x + dx]



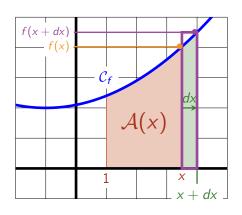
Soit A(x), l'aire de la zone en rouge.

On cherche A(x + dx).

Soit dA l'aire de la zone en vert.

On va supposer f croissante, continue et positive sur [x; x + dx]

• $dx \cdot f(x) \leq dA$



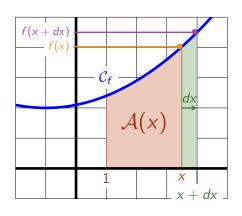
Soit A(x), l'aire de la zone en rouge.

On cherche $\mathcal{A}(\mathbf{x} + d\mathbf{x})$.

Soit dA l'aire de la zone en vert.

On va supposer f croissante, continue et positive sur [x; x + dx]

- $dx \cdot f(x) \leq dA$
- $dA \leqslant dx \cdot f(x + dx)$



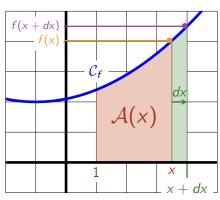
Soit A(x), l'aire de la zone en rouge.

On cherche A(x + dx).

Soit dA l'aire de la zone en vert.

On va supposer f croissante, continue et positive sur [x; x + dx]

- $dx \cdot f(x) \leq dA$
- $dA \leqslant dx \cdot f(x + dx)$
- Donc $f(x) \leqslant \frac{dA}{dx} \leqslant f(x + dx)$



On en déduit, quand $dx \rightarrow 0$:

Soit A(x), l'aire de la zone en rouge.

On cherche A(x + dx).

Soit dA l'aire de la zone en vert.

On va supposer f croissante, continue et positive sur [x; x + dx]

- $dx \cdot f(x) \leq dA$
- $dA \leqslant dx \cdot f(x + dx)$
- Donc $f(x) \leqslant \frac{dA}{dx} \leqslant f(x + dx)$

$$\mathcal{A}'(x) = f(x)$$

Continuité utile pour que $f(x + dx) \rightarrow f(x)$ quand $dx \rightarrow 0$

II. Intégrale

| II. Intégrale | Intégration | 13 / 20

II. 1) Définition

f est une fonction **continue** sur un intervalle $[a; b] \subset \mathbb{R}$.

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Avec F une primitive de f.

N'importe quelle primitive, ça ne change rien!

On cherche
$$\int_1^5 (2x+1) dx$$

On cherche
$$\int_1^5 (2x+1) dx$$

• Il faut trouver F(x) qui vérifie F'(x) = 2x + 1

$$F(x) =$$

On cherche
$$\int_1^5 (2x+1) dx$$

• Il faut trouver F(x) qui vérifie F'(x) = 2x + 1

$$F(x) = x^2 + x$$

On cherche
$$\int_1^5 (2x+1) dx$$

• Il faut trouver F(x) qui vérifie F'(x) = 2x + 1

$$F(x) = x^2 + x$$

On en déduit :

$$\int_{1}^{5} (2x+1) dx = [x^{2} + x]_{1}^{5}$$
=
=
=

On cherche $\int_{1}^{5} (2x+1) dx$

• Il faut trouver F(x) qui vérifie F'(x) = 2x + 1

$$F(x) = x^2 + x$$

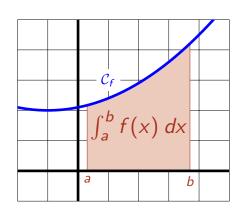
On en déduit :

$$\int_{1}^{5} (2x+1) dx = [x^{2} + x]_{1}^{5}$$

$$= (5^{2} + 5) - (1^{2} + 1)$$

$$= 28$$

II. 2) Calcul de l'aire



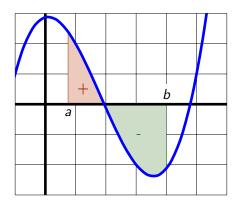
 C_f est la courbe de f dans un repère orthogonal.

L'aire sous la courbe entre a et b est :

$$\int_{a}^{b} f(x) \, dx$$

intégrale de f entre a et b.

Cas d'une fonction négative

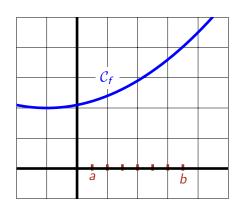


Quand on calcule $\int_a^b f(x) dx$ l'aire au-dessus (en rouge) est comptée en plus, l'aire en-desous (en vert) est comptée en moins.

II. Intégrale 2) Calcul de l'aire Intégration 17 / 20

II. 3) Sens de la notation

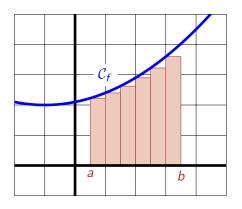
On pourrait approcher le calcul de $\int_{a}^{b} f(x) dx$ de cette façon :



 On découpe l'intervalle [a; b] en N tranches (ici N = 6)

II. 3) Sens de la notation

On pourrait approcher le calcul de $\int_{a}^{b} f(x) dx$ de cette façon :

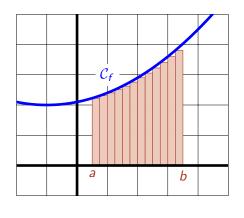


- On découpe l'intervalle [a; b] en N tranches (ici N = 6)
- On calcule la somme des aires des rectangles (voir figure)

Chaque rectangle a une aire $f(x) \times dx$, la somme est $\sum f(x)dx$

II. 3) Sens de la notation

On pourrait approcher le calcul de $\int_a^b f(x) dx$ de cette façon :



- On découpe l'intervalle [a; b] en N tranches (ici N = 6)
- On calcule la **somme** des aires des rectangles (*voir figure*)

Chaque rectangle a une aire $f(x) \times dx$, la somme est $\sum f(x)dx$

• On découpe de plus en plus fin, $N \to +\infty$, alors

$$\sum f(x) dx \to \int f(x) dx$$

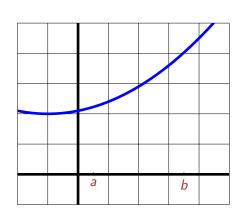
∫ représente donc une **S**omme.

En statistiques :

- En général, les N individus ont des valeurs différentes x_i .
- Le total est $\sum_{i} x_{i}$
- ullet Si tous les individus avaient la même valeur \overline{x} , le total serait inchangé.

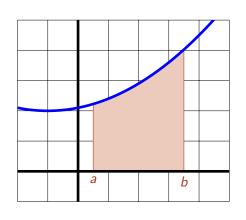
$$N \cdot \overline{x} = \sum_{i} x_{i} \quad \Leftrightarrow \quad \overline{x} = \frac{1}{N} \sum_{i} x_{i}$$

On raisonne de même sur l'intervalle [a; b].



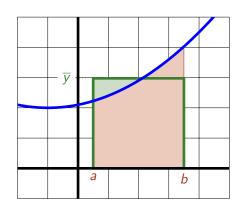
• f(x) varie

On raisonne de même sur l'intervalle [a; b].



- f(x) varie.
- Le total des f(x) est l'aire $\int_{a}^{b} f(x) dx$

On raisonne de même sur l'intervalle [a; b].



- f(x) varie.
- Le total des f(x) est l'aire $\int_{a}^{b} f(x) dx$
- Si l'aire f(x) était constante, on pourrait avoir la même aire totale.

$$(b-a) \cdot \overline{y} = \int_{a}^{b} f(x) dx$$
$$\Leftrightarrow \overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$