Intégration

Définition

f est une fonction **continue** sur un intervalle $[a;b] \subset \mathbb{R}$.

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Avec F une primitive de f.

N'importe quelle primitive, ça ne change rien!

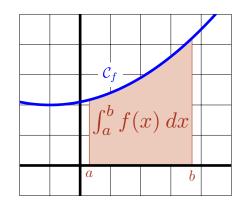
Exemple:
$$\int_{0}^{5} (x^2 - 4x + 3) dx$$

Il faut d'abord trouver une primitive de $x^2 - 4x + 3$. On trouve $\frac{1}{3}x^3 - 2x^2 + 3x$ ce qui permet d'écrire :

$$\int_0^5 \left(x^2 - 4x + 3 \right) \, dx = \left[\frac{1}{3} x^3 - 2x^2 + 3x \right]_0^5 = \left(\frac{5^3 - 2 \times 5^2 + 3 \times 5}{3} - \right) - (0) = 30$$

La partie entre crochet permet de séparer le calcul en deux étapes plus simples : d'abord trouver la primitive F, ensuite calculer F(b) - F(a).

Aire



 C_f est la courbe de f dans un repère orthogonal.

L'aire sous la courbe entre a et b est :

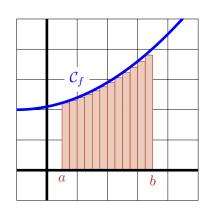
$$\int_{a}^{b} f(x) dx$$

intégrale de f entre a et b.

Important : Si sur un intervalle f < 0, c'est à dire si C_f est en-dessous de l'axe des abscisses, alors l'aire est comptée **négativement**.

Remarque: L'aire est exprimée en unité d'aire du repère. Si l'axe des abscisses est en h et que l'axe des ordonnées est en W, alors l'unité d'aire est le $W \cdot h$.

Sens de la notation

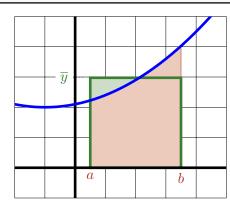


Quand on définit $\int_a^b f(x) dx$ on suit le cheminement suivant :

- on découpe l'intervalle $[a\,;\,b]$ en N tranches (ici N=12);
- on forme des rectangles sous la courbe. Les rectangles dont des hauteurs f(x) et la largeur dx, ils ont donc une aire f(x) dx.
- On calcule l'aire totale : $\sum f(x) dx$;
- l'aire des rectangle deviendra l'aire sous la courbe si fait un découpage infiniment fin : on fait tendre $N \to \infty$.

C'est à la limite $N \to +\infty$ que $\sum f(x) dx \to \int f(x) dx$.

Moyenne



On calcule une moyenne avec $\overline{y}=\frac{1}{N}\sum_i y_i$ Le principe est le même quand on passe de \sum à \int :

$$\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

 \overline{y} est la hauteur du rectangle de base $[a\,;\,b]$ telle que l'aire de ce rectangle soit $\int_a^b f(x)\,dx.$

Remarque : C'est une grosse utilisation de l'intégration. Par exemple en probabilités, l'espérance, la variance, l'écart-type... sont le résultat de calculs de certaines moyennes.

Expression fonction	Expression d'une primitive
Constante k	$k \cdot x$
$x x^2 x^3 \dots$	$x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} \dots$
$e^{a \cdot t}$ avec $a \in \mathbb{R}^*$	$\frac{1}{a}e^{a\cdot t}$
$t e^{a \cdot t}$ avec $a \in \mathbb{R}^*$	$\frac{at-1}{a^2}\mathrm{e}^{a\cdot t}$
$\frac{u'}{u}$ avec $u \neq 0$	$\ln u $
$\frac{u'}{1+u^2}$	$\arctan(u)$
$\frac{u'}{u^2} \text{ avec } u \neq 0$	$-\frac{1}{u}$