Exercice 1 : calculs d'intégrales

a)
$$\int_0^8 x \, dx$$

c)
$$\int_{3}^{5} (3x^2 - 4x + 1) dx$$

b)
$$\int_{-1}^{3} (-2x+10) dx$$

$$\mathrm{d}) \int_{\frac{1}{2}}^{1} \left(\mathrm{e}^{x} + \frac{1}{x} \right) \, dx$$

Exercice 2 : calculs d'intégrales

a)
$$\int_{2}^{3} (x-2) dx$$

f)
$$\int_{-1}^{1} (2e^x + 1) dx$$

b)
$$\int_{0}^{3} (2x^{2} - x + 3) dx$$

g)
$$\int_{-\frac{1}{3}}^{0} (1 - e^{3t}) dt$$

c)
$$\int_3^4 dx$$

$$h) \int_{\ln(2)}^{\ln(4)} e^x \, dx$$

$$\mathrm{d}) \int_{-1}^{0} 3 \, dx$$

i)
$$\int_{\frac{3}{1}}^{5} \frac{1}{2t-1} dt$$

e)
$$\int_{1}^{2} \left(x + 1 + \frac{2}{x} \right) dx$$

j)
$$\int_{1}^{2} (x+1) (x^2+2x+3) dx$$

Exercice 3: Moyenne

À l'aide d'une perfusion, on injecte pendant cinq minutes un médicament antalgique à un patient. Après l'injection, l'organisme élimine peu à peu le médicament.

On s'intéresse à la quantité de médicament présente dans l'organisme du patient au cours du temps. L'instant t=0 correspond au début de l'injection.

On fait l'hypothèse qu'à l'instant t, exprimé en minute, la quantité de médicament exprimée en millilitre, est égale à $f(t) = 0, 2te^{-0.2t}$.

- a) Déterminer graphiquement, à une minute près, l'instant à partir duquel la quantité de médicament redevient inférieure à $0.05\,\mathrm{ml}$.
- b) On considère la fonction F définie par $F(t) = (-t 5)e^{-0.2t}$. Montrer que la fonction F est une primitive de la fonction f.
- c) En déduire la valeur moyenne de la fonction f sur l'intervalle [0; 23]. On donnera la valeur exacte puis une valeur approchée arrondie à 10^{-2} près. Que représente cette valeur moyenne dans le contexte de l'exercice?

Exercice 4: Contamination

On se propose d'étudier ici la contamination d'un cours d'eau par un polluant.

Le temps t est exprimé en semaine. La quantité de polluant émise dans l'eau est donnée par la fonction $p(t) = 3e^{-t}$ exprimée en milligramme par litre et par semaine.

On notera y(t) (ou simplement y) la quantité de polluant présent dans l'eau. y est en milligramme par litre. On suppose que y(0) = 0.

p(t) correspond à l'ajout de polluant mais une partie de ce polluant se dégrade naturellement si bien que l'on pose le modèle suivant :

$$(E): y' + 0,25y = p(t)$$

Où le membre de gauche exprime la dégradation naturelle.

- 1) Quelle est l'unité de 0,25 dans l'équation (E)? Déduisez-en un temps caractéristique du problème.
- 2) Équation différentielle :
 - a) Donner la solution générale y_0 de $(E_0): y' + 0.25y = 0$
 - b) Montrer que $y_1 = -4e^{-t}$ est solution de (E).
 - c) Donner l'expression de la solution générale de (E).
 - d) Donner la solution de (E) vérifiant la condition initiale.
- 3) On considère que le cours d'eau est pollué quand on a plus de 0,1 mg/L de polluant. Combien de temps va durer la pollution?
- 4) Calculer la quantité totale de polluant déversé dans le cours d'eau, en milligramme par litre, au cours de la première année (52 semaines)
- 5) Calculer la quantité moyenne de polluant dans le cours d'eau au cours de la première année.