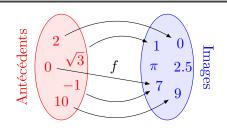
Une fonction est un association.

On utilise la flèche \mapsto par ex. $f: x \mapsto y = f(x)$.

- On peut noter f(2) = 0 ou encore $f: 2 \mapsto 0$.
- 2 est l'antécédent de 0 ; 0 est l'image de 2.
- L'ensemble des antécédents autorisés est l'ensemble de définition, noté \mathcal{D}_f .



C'est une machine qui prend un nombre en **entrée** et renvoie un nombre en **sortie**.

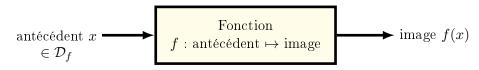


Tableau de valeur

Taille du pied (cm)	28,7	29,3	29,7	30,0	30,5	30,7
Pointure	43	44	44	45	46	46

p: Taille du pied en cm \mapsto Pointure

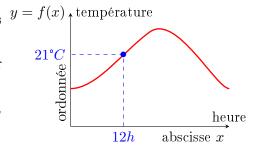
Par exemple, p(29,3) = 44. $\mathcal{D}_p =$

Courbe : abscisse \mapsto ordonnée

 C_f est la courbe de f. C'est l'ensemble des y = f(x) température points d'abscisse x et d'ordonnée y = f(x).

Une courbe est comme un tableau de valeur continu.

Exemple, ici : T(12h) = 21°C. En sciences, on précise les unités



Algorithme et expression

Un exemple d'algorithme :

Entrées : nombre x

1 début

$$a \leftarrow x + 1$$

$$b \leftarrow a$$

4
$$y \leftarrow a + b - 2$$

$$\mathsf{retourner}\ y$$

6 fin

Quand on lit $a \mapsto x+1$ il faut comprendre qu'on fait d'abord le calcul x+1 et qu'ensuite on écrit le résultat dans une case mémoire nommée a.

Dans les langages informatiques, on ne dispose pas du symbole \leftarrow et on écrit plutôt a=x+1 ce qui fait la même chose. Mais **attention**, ce = informatique n'est pas exactement le = des mathématiques.

Dans cet exemple on aura : $x \mapsto (x+1)^2 + (x+1) - 2$

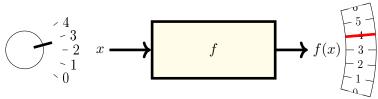
Quand on note $f: x \mapsto (x+1)^2 + (x+1) - 2$, on parle de la fonction elle-même. Si on note $f(x) = (x+1)^2 + (x+1) - 2$ on parle de l'image de x, c'est le résultat du calcul, un nombre. Donc on ne devrait pas dire « la fonction f(x) ». On le fait pourtant souvent par abus de langage. Ce n'est pas grave. D'ailleurs les physiciens omettent souvent les variables et écriront f au lieu de f(x)...

Fonctions à plusieurs variables

En physique, il est banal de rencontrer des fonctions à plusieurs antécédents. Par exemple : $f(x,y)=x^2+2\cdot x\cdot y$. Par exemple, $f(7,3)=7^2+2\times 7\times 3=91$

Les physiciens ont tendance à ne pas préciser les (x,y) et on verra écrit : $f = x^2 + 2 \cdot x \cdot y$. La plupart des formules de physiques ont cette forme, comme $U = R \cdot I$.

Variations



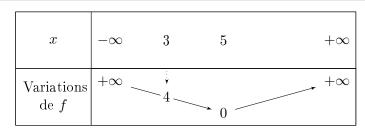
Par exemple, $f: x \mapsto x^2 - 10x + 25$. On a f(3) = 4.

Si on augmente un peu x, est-ce que f(x) va augmenter aussi? diminuer?

Méthode : On peut souvent se contenter de regarder comment évolue la courbe. Sinon la méthode habituelle est d'étudier le signe de la dérivée de f.

En gros on veut savoir si « ça monte » ou si « ça descend ». Mais une montée, c'est une descente... Les mots « croître » et « décroître » sont plus précis.

Tableau de variations



Le tableau permet de répondre à des questions simples comme : « combien y a-t-il de solutions à f(x) = 7? »

Les ∞ de ce tableau sont des **limites**. $+\infty$ n'est pas un nombre, c'est un concept : devenir aussi grand que l'on veut. Dire $A \to +\infty$ signifie que quelque soit la valeur fixée : 1000, 1000000, ..., A devient plus grand.

Utilisation dans les inéquations

On peut dire aussi : f strictement croissante $\Leftrightarrow f$ ne change pas les égalités / inégalités.

$$A < B \Leftrightarrow f(A) < f(B)$$

Au contraire, pour f strictement décroissante, le symbole est inversé.

Cela est vrai avec $\leq \geq >$.

Composition

On étudie des fonctions de référence comme \ln , ax + b, \exp ... Mais les fonctions vraiment utiles sont des assemblages de ces fonctions.

