

Dérivation – partie 1

La dérivation a été inventée par Newton au XVIIe siècle, c'est à dire par l'un des pères de la physique moderne.

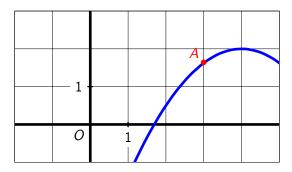
C'est donc un outil inventé au service des sciences physiques. Newton utilise les dérivées pour écrire des lois de la nature : des équations faisant intervenir des dérivées, donc des équations différentielles.

Encore aujourd'hui, beaucoup d'équations de la physiques s'écrivent de la même façon, avec des dérivées.

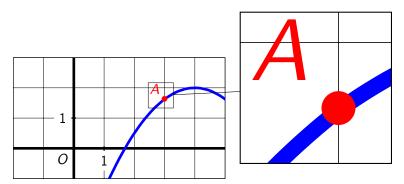
I. Tangente

De quoi s'agit-il?

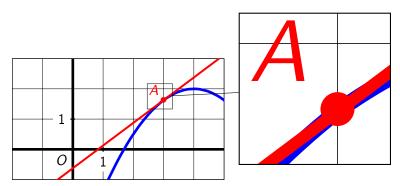
Considérons la courbe de $f: x \mapsto -0,375 \cdot (x-4)^2 + 2$ et le point A de la courbe avec $x_A = 3$.



Si on regarde la courbe en A de très près, cette courbe ressemble à une droite.



Si on regarde la courbe en A de très près, cette courbe ressemble à une droite.



Cette droite est appelée la tangente à la courbe en A.

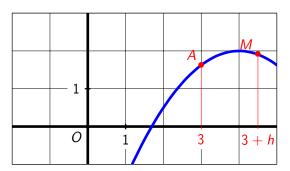
Dans cette exemple, \mathcal{T}_A : $y=0,75\,x-0,625$. C'est surtout le coefficient m=0,75 qui a de l'importance. m=0,75 est le nombre dérivé de f en x=3, c'est à dire f'(3).

1. Tangente Dérivation – partie 1 5 / 27

Comment le calculer?

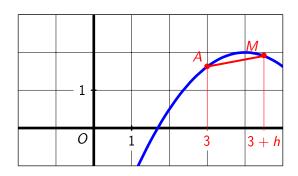
On connaît la fonction, $f: x \mapsto -0,375 \cdot (x-4)^2 + 2$ et on veut faire le calcul en x=3.

On peut calculer $f(3) = -0.375 \cdot (3-4)^2 + 2 = 1.625$. Le point de la courbe est donc en A(3,1,625).



Considérons un point M en 3 + h. Le h n'est pas fixé mais $h \neq 0$.

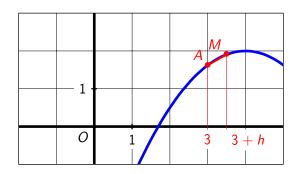
I. Tangente Dérivation - partie 1



On doit exprimer $y_M = f(3+h) = -0.375 \cdot (h-1)^2 + 2$ À présent on cherche le coefficient directeur de (AM):

$$m = \frac{y_M - y_A}{x_M - x_A} = \frac{-0,375 \cdot (h-1)^2 + 2 - 1,625}{h} = -0,375 h + 0,75$$

Le h au dénominateur se simplifie!



$$m = -0.375 h + 0.75$$

Pour obtenir la tangente, on rapproche M de A, c'est à dire que $h \to 0$. Avec la simplification précédente, on voit tout de suite que si $h \to 0$, $m \rightarrow 0.75$.

On a trouvé le nombre dérivé f'(3) = 0,75.

Exercice 1

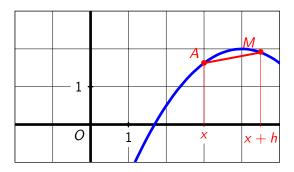
$$f(x) = -0,375 \cdot (x-4)^2 + 2.$$

- a) Calculez f(2)
- b) Exprimez f(2 + h) pour h quelconque
- c) Exprimez $\frac{f(2+h)-f(2)}{h}$
- d) Donnez la limite quand $h \to 0$.

La limite trouvée n'est autre que f'(2).

On a fait l'explication ici avec le graphique pour que ce soit plus parlant. Mais on peut parler de dérivée et faire tous les calculs nécessaires sans jamais faire référence à une courbe.

En un point quelconque

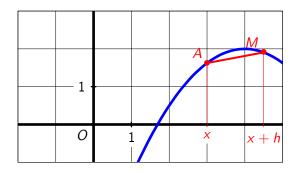


Supposons que l'on raisonne maintenant avec A en x quelconque et M un peu à côté, en x+h. Le raisonnement est le même :

$$\begin{aligned} x_A &= x \quad ; \quad y_A &= f(x_A) = -0,375 \cdot (x-4)^2 + 2 \\ x_M &= x+h \quad ; \quad y_M &= f(x_M) = -0,375 \cdot (x+h-4)^2 + 2 \\ \text{Donc } m &= \frac{y_M - y_A}{x_M - x_A} = \cdots \text{ calculs } \cdots = -0,375 \cdot h - 0,75 \cdot (x-4) \end{aligned}$$

I. Tangente Dérivation – partie 1

En un point quelconque



$$m = -0,375 \cdot h - 0,75 \cdot (x - 4)$$

Comme avant, $M \to A$, c'est à dire $h \to 0$, et alors on voit que $m \to -0,75 \cdot (x-4)$.

On en conclut :

$$f'(x) = -0,75 \cdot (x-4)$$

C'est l'expression de la **fonction dérivée de** f.

I. Tangente

Définition de la dérivée

Définition

Soit f une fonction.

On note $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ le nombre dérivée de f en a, si la limite existe et n'est pas $\pm \infty$.

Si f'(a) peut être calculé pour tous les $a \in \text{intervalle } \mathcal{I}$, on dit que fest **dérivable** sur l'intervalle \mathcal{I} .

La fonction dérivée $f': a \mapsto f'(a)$ est donc définie sur \mathcal{I} .

1. Tangente Dérivation - partie 1

Équation de la tangente

Propriété

Soit f, dérivable en a et C_f sa courbe. La tangente à C_f en x=a a pour coefficient directeur m=f'(a).

L'équation de la tangente en à C_f en x=a est :

$$\mathcal{T}_a$$
: $y = f'(a)(x-a) + f(a)$

1. Tangente Dérivation - partie 1

Exercice 2 : dérivée \rightarrow tangente

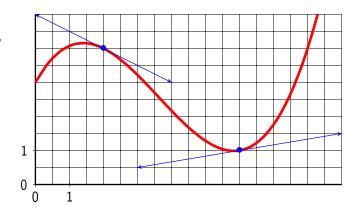
Une certaine fonction f est telle que f(3) = 4 et f'(3) = -0, 5. Déduisez-en l'équation de la tangente à C_f en x = 3.

I. Tangente Dérivation – partie 1

Exercice 3 : tangente \rightarrow dérivée

La fonction f est représentée ci-contre. Par lecture graphique, déterminez :

- a) f(2) et f'(2)
- b) f(6) et f'(6).



I. Tangente

II. Fonctions de références

Exercice 4 : Trouver les dérivées de fonctions de référence

En utilisant le rapport $\frac{f(x+h)-f(x)}{h}$, montrez que :

- a) la dérivée de $f(x) = a \cdot x + b$ est f'(x) = a,
- b) la dérivée de $f(x) = x^2$ est f'(x) = 2x
- c) la dérivée de $f(x) = x^3$ est $f'(x) = 3x^2$
- d) la dérivée de $f(x) = \frac{1}{x}$ est $f'(x) = -\frac{1}{x^2}$ (plus difficile)

Attention!

Tout ce qu'on vient de dire sert à **comprendre** ce qu'est une dérivée. Mais pour aller plus vite, on fera le calcul **complètement différemment**.

On connaît:

- des formules pour les fonctions de référence,
- les règles pour combiner ces formules.

Exemple : On sait que $(x^2)' = 2x$ et (x)' = 1, donc :

$$(3x^2 + 7x)' = 3 \cdot 2x + 7 \cdot 1$$

Les fonctions de référence

Il faut les connaître, par cœur c'est mieux...

\mathcal{D}_f	f(x)	f'(x)	$\mathcal{D}_{f'}$
\mathbb{R}	f(x) = k	f'(x)=0	\mathbb{R}
\mathbb{R}	f(x) = ax + b	f'(x) = a	\mathbb{R}
\mathbb{R}	$f(x) = x^n, n \in \mathbb{N}^*$	$f'(x) = n \cdot x^{n-1}$	\mathbb{R}
\mathbb{R}^*	$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
\mathbb{R}	$f(x) = \exp x$	$f'(x) = \exp x$	\mathbb{R}

Les fonctions de référence

Et savoir écrire très vite sans hésitation :

f(x)	1	X	x^2	x^3	x ⁴	x ⁵	<i>x</i> ⁶	
f'(x)	0	1	2 <i>x</i>	$3x^2$	$4x^3$	$5x^{4}$	$6x^{5}$	

B.A.BA

En tenant compte des priorités, une fonction peut être découpées en blocs.

$$3 \cdot (\boxed{x^2} - 17 \cdot \boxed{x} + \boxed{9} \boxed{) + 8 \cdot \boxed{x^3}$$

Considérer les blocs en x...

Dans ce cas, les blocs auront seulement des + et des - entre eux. Dans ce cas, ça reste très simple.

Notez que 3, 17 et 8 sont multipliés par des blocs contenant x. Au contraire, 9 n'est multiplié par aucun bloc avec x.

B.A.BA

En tenant compte des priorités, une fonction peut être découpées en blocs.

$$3 \cdot (\boxed{x^2} - 17 \cdot \boxed{x} + \boxed{9} \boxed{9}) + 8 \cdot \boxed{x^3}$$

$$3 \cdot (2x - 17 \cdot 1 + 0) + 8 \cdot 3x^2$$

- Considérer les blocs en x...
 Dans ce cas, les blocs auront seulement des + et des entre eux.
 Dans ce cas, ça reste très simple.
 - Notez que 3, 17 et 8 sont multipliés par des blocs contenant x. Au contraire, 9 n'est multiplié par aucun bloc avec x.
- On peut tout recopier en dérivant chaque bloc séparément bloc...
 Le 9 n'étant multiplié avec aucun x sera dérivé en 0.

Attention

Prenons par exemple:

$$f(x) = (7x + 3) \cdot (x^2 + 7)$$

Dans ce cas, nous avons deux blocs contenant des x mais ces blocs sont multipliés entre eux (alors qu'avant il n'y avait que des + et des -).

Dans ce cas c'est plus compliqué, il faudra des formules exprès.

Exercice 5 : Dérivées simples

Donnez les dérivées des fonctions suivantes :

a)
$$f(x) = 8$$

b)
$$f(x) = 3 \cdot x + 7$$

c)
$$f(x) = \frac{2x}{5} \cdot x - 9$$

d)
$$f(x) = 11x^2 + 53x - 29$$

e)
$$f(x) = x^3 - 2x + 6$$

f)
$$f(t) = 3t + t^2$$

Exercice 6: tangente encore

Soit
$$f(x) = \frac{2}{3}x^3 + x^2 - 4x + 1$$
.

Donnez l'équation de la tangente à C_f en x=3

III. Variations

Taux d'accroissement \rightarrow dérivée. On comprend donc que :

- $f' > 0 \Rightarrow$ accroissement positif $\Rightarrow f \nearrow$
- $f' < 0 \Rightarrow$ accroissement négatif $\Rightarrow f \searrow$

Donc pour étudier les variations de f, on peut commencer par étudier le signe de f'.

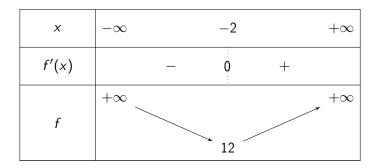
III. Variations Dérivation - partie 1 25 / 27

Exemple

On veut tracer le tableau de variation de f définie sur $\mathbb R$ par $f(x)=3x^2+12x-3$.

Pour cela on a besoin:

- de calculer Donc f'(x) = 6x + 12
- de résoudre f'(x) = 0. On trouve x = -2
- de calculer f(x) pour les solutions précédentes. lci : f(-2) = 12



Exercice 7

Donnez les variations de ces deux fonctions définies sur $[0; +\infty[$:

a)
$$f(x) = -0, 2x^2 + x + 2$$

b)
$$g(x) = -x^3 + x^2 + 2x$$