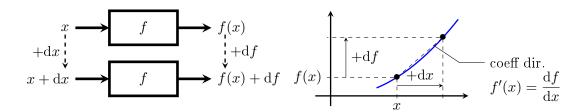
Dérivation



Variation dx en entrée \Rightarrow variation df en sortie. Quand dx \rightarrow 0, df est **proportionnel** à dx. **Par définition**, le facteur de proportionnalité est f'(x).

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} \Leftrightarrow \mathrm{d}f = f'(x) \cdot \mathrm{d}x$$
 au premier ordre

Premier ordre

Revient à considérer que, si dx assez petit, d'autres termes comme $\mathrm{d}x^2$, $\mathrm{d}x^3$... peuvent être négligés. En effet, si par exemple $\mathrm{d}x=0,01$, alors $\mathrm{d}x^2=0,0001\ll\mathrm{d}x$.

ex. :
$$f(x) = 5x^2 + 6x - 4 \Rightarrow f(x + dx) = 5(x + dx)^2 + 6(x + dx) - 4$$

= $\underbrace{5x^2 + 6x - 4}_{f(x)} + \underbrace{(10x + 6)}_{f'(x)} dx + \underbrace{5dx^2}_{\text{n\'egligeable}}$

Tangente

L'équation de la tangente à C_f en x = a est T_a : $y = f'(a) \cdot (x - a) + f(a)$

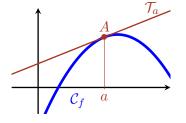
Les points de C_f sont définis par y=f(x). Si on regarde les points au voisinage de a, c'est à dire en $x=a+\mathrm{d} x$:

$$y = f(x)$$

$$= f(a + dx)$$

$$= f(a) + f'(a) dx$$

$$= f(a) + f'(a) (x - a)$$



Variations

f'(x) est le taux d'accroissement donc

- $f' > 0 \Rightarrow f \nearrow$,
- $f' < 0 \Rightarrow f \searrow$.

Exemple de tableau de variations :

- $f(x) = 3x^2 + 12x 3$
- Donc f'(x) = 6x + 12
- $f'(x) = 0 \Leftrightarrow x = -2$
- f(-2) = 12

x	$-\infty$	-2 $+\infty$
f'(x)	_	0 +
f	$+\infty$ $+\infty$ 12	

En physique, les fonctions ont souvent plusieurs variables et il est naturel de ne pas préciser les antécédents. Par exemple il ne serait pas surprenant de voir écrit

$$f = (3x^2 + 5)^{12}$$
 au lieu de $f(x) = (3x^2 + 5)^{12}$

Composition

Dans une expression comme $f(x) = (3x^2 + 5)^{12}$ on peut découper le calcul en deux grandes

etapes:

$$x \mapsto (3x^2 + 5)^{12} \Rightarrow f(x)$$
 $+ dx \downarrow$
 $+ dx \downarrow$

Ici, chercher f'(x), c'est chercher le facteur de proportionnalité $dx \to df$.

Ce facteur est $\frac{\mathrm{d}f}{\mathrm{d}x}$. À droite, on décompose le calcul en insérant un intermédiaire u.

Si dx assez petit, du aussi et dx \rightarrow du \rightarrow df est proportionnel :

$$dx \xrightarrow{\times \frac{\mathrm{d}f}{\mathrm{d}x}} df \quad \text{devient} \quad dx \xrightarrow{\times \frac{\mathrm{d}u}{\mathrm{d}x}} du \xrightarrow{\times \frac{\mathrm{d}f}{\mathrm{d}u}} df \quad \text{soit} \quad \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} \cdot \frac{\mathrm{d}f}{\mathrm{d}u} = u' \cdot \frac{\mathrm{d}f}{\mathrm{d}u}$$

Dans cet exemple,

•
$$u = 3x^2 + 5 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = u'(x) = 6x$$
.

•
$$f = u^{12} \Rightarrow \frac{\mathrm{d}f}{\mathrm{d}u} = 12 u^{11}$$

Fins cer example,
•
$$u = 3x^2 + 5 \Rightarrow \frac{du}{dx} = u'(x) = 6x$$
.
• $f = u^{12} \Rightarrow \frac{df}{du} = 12u^{11}$
• $f'(x) = \frac{df}{dx} = \frac{du}{dx} \cdot \frac{df}{du} = 6x \cdot u^{11} = 6x \cdot 12(3x^2 + 5)^{11} = 72x(3x^2 + 5)^{11}$

\mathcal{D}_f	f(x)	f'(x)	$\mathcal{D}_{f'}$
\mathbb{R}	f(x) = k	f'(x) = 0	\mathbb{R}
\mathbb{R}	f(x) = ax + b	f'(x) = a	\mathbb{R}
\mathbb{R}	$f(x) = x^n, n \in \mathbb{N}^*$	$f'(x) = n \cdot x^{n-1}$	\mathbb{R}
\mathbb{R}^*	$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
\mathbb{R}^+	$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	ℝ*+
\mathbb{R}	$f(x) = \exp x = e^x$	$f'(x) = \exp x$	\mathbb{R}
R*+	$f(x) = \ln x$	$f'(x) = \frac{1}{x}$	ℝ*+

Fonction	Dérivée	Physique
$u \pm v$	$u' \pm v'$	$d(u \pm v) = du \pm dv$
$u \cdot v$	$u' \cdot v + u \cdot v'$	$d(u \cdot v) = du \cdot v + u \cdot dv$
$u^n, n \in \mathbb{Z}$	$n \cdot u' \cdot u^{n-1}$	$d(u^n) = du \cdot u^{n-1}$
$\frac{1}{u}, u \neq 0$	$-\frac{u'}{u^2}$	$d\left(\frac{1}{u}\right) = -\frac{du}{u^2}$
$\frac{u}{v}, v \neq 0$	$\frac{u' \cdot v - u \cdot v'}{v^2}$	$d\left(\frac{u}{v}\right) = \frac{du \cdot v - u \cdot dv}{v^2}$
f(u)	$u' \cdot f'(u)$	$d(f(u)) = du \cdot \frac{df}{du}(u)$
$\exp(u) = e^u$	$u' \cdot e^u$	$d\left(e^{u}\right) = du \cdot e^{u}$
ln(u), u > 0	$\frac{u'}{u}$	$d(\ln(u)) = \frac{du}{u}$

À la physicienne...

On peut voir la notation d comme une sorte de machine à dériver. Voici quelques exemples d'une écriture qui se rapproche de la façon des physiciens :

- $f(x) = 17x + 8 \Rightarrow df = 17 dx$
- $f(x) = (8x+3)^5$, on reconnaît u = 8x+3 soit $df = du \cdot 5u^4 = 8 \cdot 5 \cdot (8x+3)^4$
- $f(x) = (5x+7) \cdot (6-x)$ on a alors u = 5x+7 et v = 6-x et $df = du \cdot v + u \cdot dv = 5 \cdot (6 - x) + (5x + 7) \cdot (-1)$